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Abstract The reaction quotient Q can be expressed in partial pressures as QP or in
mole fractions as Qx. QP is ostensibly more useful than Qx because the related Kx
is a constant for a chemical equilibrium in which T and P are kept constant while
KP is an equilibrium constant under more general conditions in which only T is
constant. However, as demonstrated in this work, Qx is in fact more important both
theoretically and technically. The relationships between Qx, QP, and QC are discussed.
Four examples of applications are given in detail.

Keywords Reaction quotient · Equilibrium constant · Equilibrium displacement
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ni

The reaction quotient Qx with respect to mole fraction xi with species i for a reaction
is defined in previous parts [1,2] of this work and shown here as Eq. 1

Qx =
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i=1

xνi
i =
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nT

)νi

=
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where

Qn =
N∏

i=1

nνi
i (2)

niis the number of moles of species i in the reacting system where there are a total of
N species, nT is the total number of moles in the system. νi is the coefficient of species
i in the balanced chemical equation, positive for product and negative for reactant; �v
is the sum of all the coefficients νi in the equation.

In an ideal gas system, pressure P, volume V, and temperature T obey ideal gas laws
represented by Eqs. 3 and 4 where R is a constant. n◦

T is the total initial number of
moles of all species in the system and ζ is the reaction extent.

PV = nT RT =
(

n0
T + �νζ

)
RT (3)

PiV = niRT (4)

The counterparts of Qx defined in partial pressure Pi and in molarity Ci are defined by
Qp and Qc as shown in Eqs. 5 and 6, where their relationships with Qx are also shown.

Q P =
N∏
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Pνi
i =

N∏

i=1

(xi P)νi = Qx P�ν (5)
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(ni
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(
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nT RT
P
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= Qx

(
P

RT

)�ν

= Q P

(
1

RT

)�ν

(6)

It is known from thermodynamics that at equilibrium with constant T, QP equals a
constant Kp which is known as the equilibrium constant. This can be demonstrated by
inserting equilibrium partial pressures into Eq. 5. By contrast QP can be any value with
non-equilibrium partial pressures. From Eq. 5, Qx is a constant at equilibrium only
when T and P are kept unchanged in the chemical system. This constant is denoted as Kx
to differentiate it from the non-equilibrium value of Qx. Therefore, it can be concluded
that Kx is not as useful as Kp [3]. But in fact we [1,2] have shown that technically Qx is
a more useful quantity for any theoretical discussion of an ideal gas system. The exam-
ple given below demonstrates that Qx is theoretically a quantity of much more general
utility. We have shown previously [1,2] that the property represented by Eq. 7 is impor-
tant for a closed system at constant T and P. In fact the expression is independent of T, P,
and V.

(
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∂ζ
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ni

= Qx
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(7)
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Only at constant T, the following property relevant to Eq. 7 is obtained as Eq. 8 which
is derived from Eq. 5.

(
∂ Q p

∂ζ

)

ni

=
(

∂ Qx

∂ζ

)

ni

P�ν + Qx

(
∂ P�ν

∂ζ

)

ni

=
(

∂ Qx

∂ζ

)

ni

P�ν + Qx�ν P�ν−1
(

d P

dζ

)

ni

(8)

Equation 10 is obtained from Eq. 9 since P is a function of nT and V at constant T as
shown in Eq. 3

P = P (nT , V ) (9)

d P =
(

∂ P

∂nT

)

V
dnT +

(
∂ P

∂V

)

nT

dV = RT

V
dnT − nT RT

V 2 dV (10)

Equation 11 is obtained for equilibrium conditions by dividing Eq. 10 by d ζ

d P

dζ
=

(
∂ P

∂nT

)

V

(
∂nT

∂ζ

)

n0
T

+
(

∂ P

∂V

)

nT

(
∂V

∂ζ

)

nT

(11)

Equation 3 can be represented generally by Eq. 12 at constant T. Equation 11 can also
be obtained directly from Eq. 12.

P = P[nT

(
n0

T , ζ
)

, V (nT , ζ )] (12)

Then Eq. 13 can be derived from Eq. 11 by using Eq. 3.

d P

dζ
= RT

V
�ν − nT RT

V 2

�νRT

P
= RT

V
�ν − nT RT

PV

�νRT

V
= 0 (13)

Equation 13 can then be used to simplify Eq. 8 so as to obtain Eq. 14.

(
∂ Q p

∂ζ

)

ni

=
(

∂ Qx

∂ζ

)

ni

P�ν (14)

Equation 14 shows that
(

∂ Q p
∂ζ

)

ni
and

(
∂ Qx
∂ζ

)

ni
are closely related especially when P

is also kept constant and both ζ and V are allowed to change. Thus, Eq. 7 remains the
most essential expression even if only T is kept constant which shows the important
role played by Qx.

When T and V are kept constant, we can derive Eq. 15 from Eq. 10.

d P

dζ
= RT

V
�ν + 0 = nT RT

nT V
�ν = P

nT
�ν (15)
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By inserting Eqs. 7 and 15 into Eq. 8 we derive Eq. 16 assuming that T and V are
constant

(
∂ Q p

∂ζ

)

ni

= Qx

[(
N∑

i=1

ν2
i

ni

)
− (�ν)2

nT

]
P�ν + Qx (�ν P�ν−1)

(
�ν

nT
P

)

= Q P

[(
N∑

i=1

ν2
i

ni

)
− (�ν)2

nT

]
+ Q P

(�ν)2

nT
= Q P

N∑

i=1

ν2
i

ni
> 0 (16)

It is easy to see from Eq. 6 that QC is also a constant at equilibrium with constant T and
is known as KC. However, QC is usually used when both T and V are constant. Under
these conditions, Eq. 17 can be obtained from Eq. 6 or derived similarly to Eq. 16.

(
∂ QC

∂ζ

)

ni

= QC

N∑

i=1

ν2
i

ni
> 0 (17)

Equations 7, 16, and 17 signify that the value of Q is increased by a forward reaction
and decreased by a backward reaction. As shown in part I of this work [1], Qx is also
the key in assessing the direction of the shift in chemical equilibrium even though
Kx is not a constant while P is variable. If �v > 0, then increasing P will increase
QP according to QP = QxP�v when the reaction in the system is frozen. Then the
reaction will go backwards according to Eq. 7 to decrease Qx in order to restore QP
to its original value of KP. If �v < 0, increasing P will decrease QP if Qx is kept as
a constant, and the reaction will go forward in the equilibrium shift to increase Qx in
order to restore the original value of QP. In both situations, increasing P will result
in an equilibrium shift towards the side of chemical reaction containing the smaller
sum of coefficients. Similarly, from Eq. 6, Qc = Qx(nT/V)�ν When V is increased
and the reaction is frozen, Qc will decrease if �ν > 0 and increase if �ν < 0 for
constant T. This is because Qx is a constant for a closed system when ζ is fixed. When
the reaction is unfrozen, according to Theorem 7 in part I of this work [1] or Eq. 7,
the equilibrium will shift toward the side with the larger sum of coefficients for the
balanced chemical reaction equation. This result is exactly the same as that described
by Theorem 2a introduced in part I of this work [1,2].

2 Application 1

In part I of this work [1] we derived Eq. 19 from Eqs. 7 and 18 for the Gibbs energy
G of a reaction.

(
∂G

∂ζ

)

T,P,ni

=
[
∑

i

νiμ
0
i (T, P)

]
+ RT ln Qx (18)

(
∂2G

∂ζ 2

)

T,P,ni

≥ 0 (19)
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where μ0
i (T, P) is the standard chemical potential for species i. In Eq. 17 of ref. [4] a

similar equation as Eq. 19 is given but without the equal sign, i. e. with > rather than
≥. This is clearly an oversimplification as it can be seen from Eqs. 16 and 17 that the
equals sign can be rigorously excluded only at constant T and V as shown by Eq. 20.

(
∂2G

∂ζ 2

)

T,V,ni

> 0 (20)

Equations 19 and 20 signify that the Gibbs energy is a minimum at equilibrium.

3 Application 2

The molarity Ci is totally determined by ni and ζ at constant V and thus it can be
described with the function shown by Eq. 21 for reactions at constant T and V.

Ci = Ci (ni , ζ ) (21)

When species i is added into a chemical equilibrium system, the change of the molarity
of species i is shown by Eq. 22.

dCi =
(

∂Ci

∂ni

)

ζ

dni +
(

∂Ci

∂ζ

)

V,ni

dζ (22)

The first term on the right of Eq. 22 describes the change in molarity caused by the
addition of species for the open system if the chemical reaction involved in the system
is frozen. The second term describes the change in molarity caused by the change in
ζ for the closed system. The change in ζ is caused by the equilibrium shift initiated
by the addition of species i. ζ is determined by ni and QC, thus it can be described by
Eq. 23. The amount of change in ζ indicated in Eq. 24 is determined from Eq. 23 at
equilibrium with QC = KC.

ζ = ζ(ni , QC ) (23)

dζ =
(

∂ζ

∂ni

)

QC =KC

dni (24)

By inserting Eq. 24 into Eq. 22 we obtain Eq. 25 for equilibrium at constant T and V.

(
∂Ci

∂ni

)

T,V,QC =KC

=
(

∂Ci

∂ni

)

ζ

+
(

∂Ci

∂ζ

)

V,ni

(
∂ζ

∂ni

)

T,V,QC =KC

(25)

In fact Eqs. 21 and 23 can be combined into Eq. 26, while Eq. 25 can be obtained
directly from Eq. 26. It is also indicated by Eq. 26 that ni is a function of ζ and n0

i the
initial mole number of species i.

Ci = Ci [ni , ζ (ni , QC )] = Ci [ni (n
0
i , ζ ), ζ (ni , QC )] (26)
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The terms
(

∂Ci
∂ni

)

ζ
and

(
∂Ci
∂ζ

)

V,ni
in Eq. 25 can be easily obtained as shown by Eqs. 27

and 28. Equation 27 shows that the molarity of i is increased when species i is added
to an equilibrium system if the chemical reaction in the system is frozen.

(
∂Ci

∂ni

)

ζ

=
(

∂
ni
V

∂ni

)

ζ

= 1

V
> 0 (27)

(
∂Ci

∂ζ

)

V,ni

=
⎛

⎝∂
n0

i +νi ζ

V

∂ζ

⎞

⎠

V,ni

= νi

V
(28)

Only V, ni and ζ will affect the value of QC when i is added. Thus, the term(
∂ζ
∂ni

)

T,V,QC =KC
in Eq. 25 can be obtained from Eq. 29.

QC = QC (V, ni , ζ ) (29)

At constant T, QC is a constant under equilibrium conditions. We only consider QC
when T and V are constant. Thus at equilibrium we can obtain Eqs. 30 and 31 from
Eq. 29. Equations 6 and 17 are used in obtaining Eq. 31.

d QC =
(

∂ QC

∂ni

)

V,ζ

dni +
(

∂ QC

∂ζ

)

V,ni

dζ = 0 (30)

(
∂ζ

∂ni

)

T,V,QC =KC

= −

(
∂ QC
∂ni

)

V,ζ(
∂ QC
∂ζ

)

V,ni

= − QC
νi
ni

QC
∑N

j=1
ν2

j
n j

(31)

Combining Eqs. 28 and 31, we obtain Eq. 32 for the second term on the right of Eq. 25.

(
∂Ci

∂ζ

)

V,ni

(
∂ζ

∂ni

)

T,V,QC =KC

= −νi

V

QC
νi
ni

QC
∑N

j=1
ν2

j
n j

= −
ν2

i
ni

V
∑N

j=1
ν2

j
n j

≤ 0 (32)

Equation 32 pertains to a closed system and its negative value indicates that the reaction
proceeds to reduce the increase caused by the first term on the right of Eq. 25. When
Eqs. 27 and 32 are inserted into Eq. 25, we obtain Eq. 33.

(
∂Ci

∂ni

)

T,V,QC =KC

= 1

V

⎡

⎢⎣1 −
ν2

i
ni

∑N
j=1

ν2
j

n j

⎤

⎥⎦ ≥ 0 (33)

Equation 33 signifies that when species i is added at constant T and V, the new equi-
librium molarity of species i will never be less than its original equilibrium molarity.
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4 Application 3

For a closed system, we have

P = P[T, V, ζ (T, V, Q P )] (34)

Equation 35 can be obtained from Eq. 34 for constant T

(
∂ P

∂V

)

T,Q p=K P

=
(

∂ P

∂V

)

T,ζ

+
(

∂ P

∂ζ

)

T,V

(
∂ζ

∂V

)

T,Q p=K P

(35)

The first term on the right side of Eq. 35 indicates that the pressure of the system is
decreased when the volume is increased as indicated by Eq. 36 where the reaction in
the system is frozen.

(
∂ P

∂V

)

T,ζ

=
(

∂ nT RT
V

∂V

)

T,ζ

= −nT RT

V 2 = − P

V
< 0 (36)

The second term on the right side of Eq. 35 is positive as indicated by Eqs. 37 and 38
which means that the reaction in the system will proceed to increase the pressure of
the system for an equilibrium shift.

(
∂ P

∂ζ

)

T,V
=

⎡

⎣∂

(
n0

T +�νζ
)
RT

V

∂V

⎤

⎦

T,ζ

= �νRT

V
= �νnT RT

nT V
= �ν P

nT
(37)

(
∂ζ

∂V

)

T,Q P=K P

= −

(
∂ Q P
∂V

)

T,ζ(
∂ Q P
∂ζ

)

T,V

= −

{
∂[Qn

(
RT
V

)�ν ]
∂V

}

T,ζ{
∂[∏N

i=1 (n0
i +νi ζ )vi ]

(
RT
V

)�ν

∂ζ

}

T,V

= − −�νQ P
V

Q P
∑N

j=1
ν2

j
n j

(38)

Equation 16 can be used in the derivation of Eq. 38. We obtain Eq. 39 when Eqs. 36–38
are inserted into Eq. 35. The inclusion of the ≤ sign can be justified from Eq. 7.

(
∂ P

∂V

)

T,Q p=K P

= P

V

⎡

⎢⎢⎣

(∑N
j=1 ν j

)2

nT

∑N
i=1

ν2
i

ni

− 1

⎤

⎥⎥⎦ ≤ 0 (39)

The final results from Eqs. 25 and 35 show a common feature of equilibrium, i.e. that
the change of an intensive variable Yi(Ci or P in the above example) resulting from the
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change of an extensive variable yi(ni or V) for a system at equilibrium (the term on the
right side of Eqs. 25, 35, 41 or 42) is less than that for a system not at equilibrium (the
first term on the left side of Eqs. 25, 35, 41 or 42). Equation 41 applies to the intensive
variable xi and its corresponding extensive variable ni, as indicated by Eq. 40 which
is derived in part I of the work [1] for equilibrium at constant T and P.

(
∂xi

∂ni

)

T,P,Qx =Kx

=
(

∂xi

∂ni

)

ζ

+
(

∂xi

∂ζ

)

ni

(
∂ζ

∂ni

)

T,P,Qx =Kx

= 1 − xi

nT
− Qx (νi − �νxi )

2

nT ni

(
∂ Qx
∂ζ

)

n0
i

=

(∑
j �=i n j

) [
∑

j �=i
ν2

j
n j

−
(∑

j �=qi ν j

)2

∑
j �=i n j

]

n2
T

[∑
j

ν2
j

n j
− �ν2

nT

] ≥ 0 (40)

∣∣∣∣∣

(
∂Yi

∂yi

)

T,Q p=K P

∣∣∣∣∣ ≤
∣∣∣∣∣

(
∂Yi

∂yi

)

T,ζ

∣∣∣∣∣ (41)

From Eq. 41, Eq. 42 can be derived.

∣∣∣∣∣

(
∂yi

∂Yi

)

T,Q p=K P

∣∣∣∣∣ ≥
∣∣∣∣∣

(
∂yi

∂Yi

)

T,ζ

∣∣∣∣∣ (42)

The chemistry signified by Eq. 42 can be formulated as “The change of an extensive
variable caused by changing the corresponding intensive variable is larger if chemical
equilibrium is maintained than if no reaction could take place in the system” [4]. The
results from Eqs. 41 and 42 are just what referred by Theorem 3 [1,2].

5 Application 4

Theorem 7 For an ideal gas equilibrium system at constant T and P, the final mole
fractions are only a function of Kx and the initial mole ratio, independent of whether
the system is scaled up or down.

An example showing the validity of Theorem 7 was given in Table 1 from part II
of the work [2]. It is demonstrated below by another example, which involves Qx. In

Table 1 Values of reaction
extent obtained from various
initial moles R

R 0.2000 0.5000 1.0000 2.0000 3.0000 4.0000 5.0000

ζ 0.0766 0.1915 0.3831 0.7661 1.1492 1.5322 1.9153
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this example Kx is set at 2.97 [5].

2A = 2B + C
R 0 0 ini tial
R − 2ζ 2ζ ζ f inal

(43)

From Eq. 43 we obtain Eq. 44.

(
2ζ

R+ζ

)2 (
ζ

R+ζ

)

(
R−2ζ
R+ζ

)2 = 4ζ 3

(R − 2ζ )2(R + ζ )
= 2.97 (44)

When the initial mole R takes various values, Table 1 shows the corresponding values
of the reaction extent ζ .

When R is scaled up or down m times, it is easy to see from Eq. 44 that the reaction
extent ζ must be similarly scaled. Thus, the final mole fraction distribution for all the
species will be the same as shown from Eqs. 45 to 47 whatever the value of R.

ζ

R + ζ
= ζ1

R1 + ζ1
= ζ2

R2 + ζ2
= · · · (45)

2ζ

R + ζ
= 2ζ1

R1 + ζ1
= 2ζ2

R2 + ζ2
= · · · (46)

R − 2ζ

R + ζ
= R1 − 2ζ1

R1 + ζ1
= R2 − 2ζ2

R2 + ζ2
= · · · (47)

As a result of this scaling, only one solution for a particular R is needed since the
others can be easily obtained from Eq. 48.

ζ

R
= ζ1

R1
= ζ2

R2
= · · · (48)

6 Conclusions

Superficially, it might be argued that conclusions based on Qx are not reliable since
Kx is only a constant if the pressure is fixed. However, Qx is in fact more important
theoretically as it has been shown in this work that it is particularly useful in developing
an equilibrium theory for ideal gas systems and indeed most equilibrium problems can
be solved from its consideration [6–13]. The relationships between QP and Qx, and
between QC and Qx are discussed. Four examples where Qx provides an essential
contribution are given in detail. Of particular interest is that our rigorous proof shows
that Eq. 19 should contain ≥ rather than the > reported in the derivation given in ref.
[4]. Although the contents concerned here are elementary, it deserves the effort paid
in getting more in-depth and systematic views [14]. We agree that good work, whether
it is elementary or in frontier, is also educational significant [15].
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